|
|
Главным вкладом естественных наук XX века в общее постижение мира были представления глобального эволюционизма - движения и развития природы, ее усложнения и совершенствования. Модель развития Вселенной (С.Хокинг) от начального момента "Большого взрыва" показала возможную динамику грандиозного процесса образования и взаимодействия космических тел, а "Антропный принцип" поставил вопрос о "паттерне" - Божественном замысле эволюции Вселенной. Эта мысль ярко выражена в трудах Пьера Тейяра де Шардена. Начальность и конечность, развитие и возможность "плана строения" материального мира, - вот те новые идеи науки, которые постепенно переходят в сознание и мировосприятие любого образованного человека. Другой научной идеей, вышедшей за пределы научных аудиторий в средства массовой информации, является представление о планетарном экологическом кризисе как следствии развития цивилизации. Науки о жизни и о человеке в современном образовании играют системообразующую роль, являясь фундаментом как научного мировоззрения, так и обыденного, практического восприятия жизни. Поэтому важно построить общую фундаментальную часть вузовского образования таким образом, чтобы гуманитарное и естественнонаучное знание складывались в единую картину. Объединяющим звеном и должны быть те модели, которые разработаны современными науками о живом: историческое развитие биосферы и ноосферы, индивидуальное развитие организмов, динамика развития человечества и цивилизации, взаимодействие природы и общества, биосферы и Космоса. Наконец, те модели, которые помогают осмыслить социальную эволюцию, а также развитие и здоровье личности человека с позиций современной динамической теории систем. Методологическую основу рассмотрения всех этих разноуровневых нелинейных процессов и взаимодействий дает синергетика (Г.Хакен) - общая теория системного анализа совместного кооперативного действия разнообразных процессов становления в природе. История открытия и быстрого распространения основных закономерностей и понятий синергетики в самые различные области знания неразрывно связана с необходимостью адекватного описания самоорганизации и усложнения неравновесных открытых живых систем. (И.Пригожин). Идея преподавания общих естественнонаучных дисциплин в высшей школе с позиций синергетики и нелинейной динамики реализована в государственных образовательных стандартах по таким дисциплинам, как " Концепции современного естествознания" (для гуманитариев), "Экология" (для технических направлений) и "Биология с основами экологии" (для естественнонаучных направлений). В данной работе освещается опыт автора соответствующих лекционных курсов в занятиях со студентами. Центральной частью всех трех курсов является глава "Живые системы", в которой обсуждаются проблемы происхождения и динамического состояния Земли, сущности жизни и основных принципов организации живой природы. Здесь, исходя из конкретных примеров, иллюстрирующих поведение живых систем различных уровней организации, формулируются основные свойства и функции, присущие всему живому (субклеточным системам, клеткам, органам, сообществам, экосистемам и биосфере), объясняются и применяются основные положения общей динамической теории систем. В описании живых систем используются кибернетические схемы контуров регуляции, описания обратных связей и "рецепторов результата" (П.К.Анохин, И.И.Шмальгаузен), позволяющих биологическим системам саморегулироваться, воспроизводиться и адаптироваться к изменениям внешней среды. Рассматриваются потоки вещества, энергии и информации между элементами системы или системой и средой. В этой части рассматриваем и те принципы синергетики, которые описывают "бытие" и самосохранение живых систем: это иерархичность и гомеостатичность. Эти понятия являются ключевыми для описания структурной сложности и саморегуляции живых систем. В биологии давно существуют и развиваются соответствующие этим понятиям концепции - уровней биологической организации и гомеостаза. Системный анализ для разных уровней организации живого применен в классических работах И.И.Шмальгаузена, Н.В.Тимофеева-Ресовского, Э.Бауэра, А.А.Ляпунова, П.К.Анохина. Концепция уровней организации живого, сложившаяся в биологии к 60-м гг. нашего века, позволяет обсуждать общие свойства жизни. Еще раньше фундаментальные отличительные черты и функции живого вещества сформулировал В.И.Вернадский в своем учении о биосфере. В тех же известных трудах обсуждаются и проблемы гомеостатической регуляции в живых системах разных уровней, в т.ч. проблемы гомеостаза биосферы. Идея существования физиологических механизмов, поддерживающих постоянство внутренней физико-химической среды организма - условие его свободной жизни, - принадлежит К.Бернару ("1" в.), термин "гомеостаз" прочно вошел в биологию с 1929-30 гг. (У.Кеннон). Понятие гомеостаза является одним из основных в физиологических науках. В наших курсах принципы иерархичности и гомеостатичности рассматриваются на примерах клеточного, организменного и биоценотического уровней жизни, с кратким объяснением механизмов саморегуляции и устойчивости живой системы в каждом случае. Особенное внимание уделяется способности живых организмов не только получать, накапливать и выдавать информацию, но и оценивать ее значимость для реализации основных потребностей живого существа: самосохранения, самовоспроизведения и успешной конкуренции за жизненные ресурсы. Приводится яркий пример нейроэндокринной регуляции процессов размножения у животных, включающий увлекательные и загадочные явления ориентировки организма во времени и в пространстве, навигационных и "часовых" механизмов, многоуровневой гормональной регуляции кардинальной перестройки организма, видовую наследственную программу продолжительности жизни, центральные нейрогуморальные связи и прочее. Такие примеры необходимы для того, чтобы у студентов формировалось чувство восхищения совершенством живой природы, и не возникал соблазн подмены объяснения тонких механизмов саморегуляции простым их обобщающим названием. О такой опасности вульгаризации в описании природных процессов предупреждал в свое время и родоначальник современной общей теории систем - Л.фон Берталанфи. Подобные примеры показывают, что простые общие закономерности динамического поведения живого, описываемые общей теорией систем и синергетикой, приобретают своеобразие в каждом отдельном случае благодаря тонкой биохимической специфичности явлений рецепции, матричного синтеза, ферментативного катализа, иммунного ответа. Плодотворным оказывается также обсуждение на примерах живых систем таких ключевых понятий синергетики как "хаос" и "порядок". При этом формула "порядок из хаоса" служит образным определением одного из основных свойств жизни - ее атиэнтропийности. Это свойство лежит в основе таких фундаментальных биологических процессов как индивидуальное развитие организма и эволюция живой природы. Понятие "хаос" трактуется двояко: в философском смысле - как одна из первооснов устройства мира, первичное состояние материи. Однако к биологическим сложным системам более приложимо представление о временном состоянии динамического хаоса как неустойчивого состояния системы при перемене регуляционного режима. В индивидуальном развитии организма такие фазы запрограммированы и закономерно предшествуют детерминации (определению пути дифференцировки) клеточных популяций (О.Мелехова). Сложные процессы развертывания структурного многообразия на основе единой наследственной программы в современной биологии исследуются методами генетического анализа - регистрации времени и места включения определенных генов и влияния продуктов их экспрессии на дифференцировку соседних групп клеток. Экспериментальный анализ раннего развития животных, продолжающийся более ста лет, представлен многими томами морфологических и биохимических описаний. Синергетический подход дает возможность сравнить динамические характеристики фундаментальных явлений природы - онтогенеза и филогенеза, протекающих в различных временных и пространственных масштабах. Такой подход позволяет обнаружить в этих процессах ряд важнейших общих черт, соответствующих синергетическим "принципам становления", из которых В.Г.Буданов главными считает нелинейность, неустойчивость, незамкнутость, динамическую иерархичность и эмерджентность, наблюдаемость. Незамкнутость (открытость) биологических систем является основным условием их существования. Это положение не требует доказательств, и его легко иллюстрировать на примерах как отдельного организма, так и экосистемы и биосферы в целом. Однако в определенных фазах эволюции Земли можно найти изменения в режиме освещенности Земли, а также примеры интенсификации потоков вещества из ее глубин. Эти фазы развития Земли коррелировали с достижением новых уровней в живой природе (О.П.Иванов). В раннем онтогенезе также значение триггеров развития имеют фазы запуска потоков вещества (например, при оплодотворении, в процессе гаструляции). Для общего описания биологических систем, разнообразных, высоко гетерогенных и вечно развивающихся, особое значение приобретают понятия "параметры порядка" и "аттрактор". Очень привлекательна идея описания бесконечно сложной системы с помощью небольшого числа переменных, которые и определяют потенциал к развитию всей системы. Исходя из представлений Э.Бауэра, в эволюционном процессе среди параметров порядка главенствующую роль играет энергетический (повышение коэффициента полезного действия процессов биологического окисления в конечном счете приводит к увеличению возможностей "внешней работы" организмов, что и является основным залогом биологического прогресса). Другими параметрами порядка в описании сложных процессов эволюции всей живой природы можно считать показатели усложнения структуры - прогрессивной специализации клеток, а в описании прогрессивной эволюции животного мира - показатели развития и усложнения центральной нервной системы. Экспериментальное изучение раннего онтогенеза показывает, что и в этом случае показатели энергообмена могут считаться параметрами порядка, определяющими как пространственный, так и временной "паттерн" начальных периодов эмбриогенеза (О.П.Мелехова). Успехи в биологии развития в последнее десятилетие связаны с методами генетического анализа, позволившего изучать механизмы реализации программы развития, закодированной в геноме. Но если само существование такой программы онтогенеза не вызывает сомнений, то вопрос о возможности генетической программы эволюции - один из наиболее интригующих и дискуссионных. Освещение механизмов и движущих сил эволюции с позиций современного дарвинизма ("синтетической теории эволюции") и теории самоорганизации обрисует картину исторического развития живой природы с разных сторон, что и представляет интересную тему для обсуждения со студентами. Представления синергетики о немонотонности, креодичности процессов развития, о роли флуктуаций, состояний неустойчивости и пространственной неоднородности внутренней среды в усложнении организации зародыша в теории онтогенеза приняты, разрабатываются и имеют исторически сложившиеся корни (концепции "эпигенетического ландшафта" Уодцинггона, критических периодов онтогенеза П.Г.Светлова и др.). Представления о немонотонности хода развития человечества, о смене цивилизаций, о череде экологических кризисов в историческом развитии биосферы - также играют очень существенную роль в современной научной картине мира. Для человека, стоящего на пороге жизни, знание критериев и значения кризисных ситуаций и умение сделать правильный выбор образа действий - это не только показатель образованности, но и важнейший показатель качества личности. В описании поведения разнообразных живых существ, их адаптации к изменениям среды обитания важными моментами являются наличие порогов чувствительности к внешним воздействиям, парадоксальная реакция на сверхслабые дозы, явления кумулятивного и синергического, интегрального действия многочисленных факторов среды на организмы. Как для успешного моделирования биосферных процессов, так и для экологически грамотного поведения в повседневной жизни чрезвычайно важно освоение того способа восприятия действительности, которое сейчас часто называют "нелинейным мышлением" (Г.Ю. Ризниченко). Главные его черты - это представления о ведущей роли многообразия как элементов, так и их реакций, в устойчивости биологических систем, и о неоднозначности прогнозов поведения при любых воздействиях извне. С этих позиций в наших курсах рассматривается история взаимодействий природы и общества, смены цивилизаций, антропогенных экологических кризисов. Обсуждаются модели демографических процессов, возможные сценарии будущего человечества (Д. Медоуз, Д. Форрестер, С.П. Капица и С.П.Курдюмов). Таким образом, синергетика предоставляет нам единый тезаурус для обсуждения и сравнения динамики различных процессов развития в природе и обществе, полезную основу современной естественнонаучной картины мира. Литература: 1. Тимофеев-Ресовский Н.В., Воронцов 11.И., Яблоков А.В. Краткий очерк
теории эволюции. М., 1977. |